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Container Survey
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Please vote based on your experience with:   
•Virtual machines, hypervisors (VMware (1998), Virtualbox (2007)) 
•Docker (2013) 
•Shifter (2015) 
•Singularity (2016) 

https://doodle.com/poll/2a723x2u9esbxyhh 
or 

https://tinyurl.com/thetasurvey2 

https://doodle.com/poll/2a723x2u9esbxyhh
https://tinyurl.com/thetasurvey2
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Virtualization, Conteinerization

The aim is to run an app in an isolated environment 

• Virtual machines provide full virtualization 
• Requires an image file 
• Guest OS run on the host OS on a virtual hardware layer 

• Containerization is OS level virtualization 
• Requires an image or a recipe file 
• Each isolated user-space instance is called a container
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Do we need containers?

It can make your life easier. 

http://phdcomics.com/comics/archive.php?comicid=531
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Advantages

• Portability 
• You can use the same image on your laptop, local cluster or a 
supercomputer.  

• No need to ask system admins to install a library for you. 

• Reproducibility 
• $28 billion per year is spent on preclinical research that is not 

reproducible.  
• Include all data required to run your application in the image.  

• Faster development and production 
• You can build the image anywhere, no need to compile on login node. 
• You can create an image based on existing images.
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A Silver Bullet?

May not be the best solution. 

https://xkcd.com/1988/
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A Silver Bullet?

May not be the best solution. 

https://xkcd.com/1988/
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“The average time required to implement a moderate sized 
application is equivalent to half-life of the parallel computing 

platform”, John Reynders, 1996.
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Virtual Machines vs Containers
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Virtual Machines vs Containers
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Both Require: 
• Host Operating System 
• Hypervisor or Engine 
• Image 

Main Difference: 
• VMs require entire internal 

operating system 
• VMs virtualize system 

hardware
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Container Solutions

• Linux Containers (LXC) 
• Uses kernel namespaces and cgroups for resource 

management. 
• Docker 

• Extension of LXC, current enterprise solution for micro-
services. 

• HPC containers: 
• Shifter (NERSC) 
• Charlie Cloud (LANL) 
• Singularity (LBNL, Sylabs Inc.)
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https://hpc.github.io/charliecloud
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Container Comparison
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by talking about the software itself. Singularity is the first of its kind to be easy for both users
and administrators, and was developed in collaboration by HPC administrators, developers
and research scientists alike. We started our work aiming to solve the problem of a lack of
reproducible, portable environments for science. Our hypothesis was that we could invent
data structures and accompanying methods in a software package to make this possible. We
have validated our work in the most powerful manner possible—installation and extensive use
after detailed review by supercomputer centers globally. Singularity represents a direct imple-
mentation to demonstrate the validity of this novel scientific idea. We will focus our discussion
on solving these problems and usage, and it will be followed by a comparison of Singularity to
other Linux containers that do not address the problem fully. Finally, we will provide forward
thinking about how Singularity fits in with this continually changing landscape.

The problems that singularity solves

This section will briefly overview a selection of problems that Singularity aims to solve. We
start with a comparison to currently existing solutions, followed by how Singularity addresses
concerns with these approaches, and then example use cases of such problems.

Available container solutions

While several software management solutions exist that provide flexibility and customization,
including environment modules [3] for Linux environments in production (CHOS) [38], our
focus will be on container solutions that house not just modular software, but potentially entire
systems. We provide an overview of our comparison of the leading container technologies in
(Table 1), which has been extended and adopted from [30]. As it is the case that technologies

Table 1. Container comparison.

Singularity Shifter Charlie Cloud Docker

Privilege model SUID/UserNS SUID UserNS Root Daemon

Supports current production Linux distros Yes Yes No No

Internal image build/bootstrap Yes No* No* No***
No privileged or trusted daemons Yes Yes Yes No

No additional network configurations Yes Yes Yes No

No additional hardware Yes Maybe Yes Maybe

Access to host filesystem Yes Yes Yes Yes**
Native support for GPU Yes No No No

Native support for InfiniBand Yes Yes Yes Yes

Native support for MPI Yes Yes Yes Yes

Works with all schedulers Yes No Yes No

Designed for general scientific use cases Yes Yes No No

Contained environment has correct perms Yes Yes No Yes

Containers are portable, unmodified by use Yes No No No

Trivial HPC install (one package, zero conf) Yes No Yes Yes

Admins can control and limit capabilities Yes Yes No No

In addition to the default Singularity container image, a standard file, Singularity supports numerous other formats described in the table. For each format

(except directory) the suffix is necessary for Singularity to identify the image type.

*relies on Docker

**with security implications

***depends on upstream

https://doi.org/10.1371/journal.pone.0177459.t001

Singularity: Scientific containers for mobility of compute

PLOS ONE | https://doi.org/10.1371/journal.pone.0177459 May 11, 2017 4 / 20

G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific containers for mobility of 
compute,” PLoS One, vol. 12, no. 5, pp. 1–20, 2017.
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Performance / Overhead
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Application Performance with 128-Process 
(2 nodes) on KNL with Cache/Flat Mode 48

Singularity-based container technology only introduces <7% overhead

X. Lu and D. K. Panda, “Is Singularity-based Container Technology Ready for 
Running MPI Applications on HPC Clouds?,” Proc. 10th Int. Conf. Util. Cloud 
Comput. (UCC ’17), pp. 151–160, 2017.

CG Conjugate Gradient
EP Embarrassingly Parallel
FT 3D FFT, all-to-all communication
IS Integer Sort, random memory access
LU Lower-Upper Gauss-Seidel solver
MG Multi-Grid, memory intensive 
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Performance / Overhead
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X. Lu and D. K. Panda, “Is Singularity-based Container Technology Ready for 
Running MPI Applications on HPC Clouds?,” Proc. 10th Int. Conf. Util. Cloud 
Comput. (UCC ’17), pp. 151–160, 2017.

Graph-data analytics workload
Point-to-point communications
20,10 means 220 vertices and 210 edges

2 KNL nodes, 128 processes

Application Performance with 128-Process 
(2 nodes) on KNL with Cache/Flat Mode 48

Singularity-based container technology only introduces <7% overhead

Less 
than 8% overhead for CPU, 

memory, network, and IO
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the same performance as the native execution. The KVM 
virtualization is a bit slower, but as we can see, we had to 
manipulate the time scale to show the difference. It means that 
KVM virtualization lags behind native execution by less than 
1%. The standard deviation results shows us that the 
measurements were pretty the same and stable as well. 

B. Networking benchmarks 
When we measured the network performance, we used the 

standard Linux bridge for networking. It is the most common 
way to ensure network connectivity for a container. The kernel 
module used to function as a bridge, can also be used to create 
virtual Ethernet devices, which are connected to each other. 

First, we measured the normal operation using Linux 
bridge. The Results are shown in TABLE II. 

When we look at the results, we can realize that there are 
more significant differences between the results than it was 
before at the CPU benchmarks. The containers except 
Singularity fall behind compared to the native or KVM 

network performance. If we look at the standard deviation we 
can also see that the Docker and LXC containers have a very 
high standard deviation compared to Singularity or the native 
execution. 

So we looked at the IPerf tool statistics for the reason. We 
realized that when we use the standard Linux bridge, the 
retransmission rates for the Docker and for LXC were far 
higher than in any other cases. This is shown in TABLE III. 

As we can see the retransmission rates are very high for 
Docker and LXC. The native retransmission rate was zero 
every time, so we could rule out the hardware failure. So we re-
runned the test with a different configuration. 

When we use the docker with host networking, it means 
that the Docker uses the physical network card as the host OS. 
When we enable this mode, the services within the docker can 
be reached as if those are running on the native OS. Every 
network port that are used by Docker cannot be used on the 
host OS. LXC has the same problem, we have to edit some 
configuration files to change the network mode, but if we do 
that the retransmission rate falls back dramatically. 

The Singularity is using the network card this way by 
default, because it is used by HPC systems where the biggest 
performance is needed [8]. 

The corrected experiment results are shown in table IV and 
TABLE V. 

As we can see the results are pretty the same. Now only the 
KVM virtualization is the slowest one, but this difference is 
also below 1%, like in CPU benchmarks. 

In this case when we want to maximize the performance we 
must run containers with different network services on the 
same host, or we could use only one container per host with 
many different services. This reduces the usability of the 
containers. There are some other modes of the networking 
methodology for containers. There are some overlay 
technologies to connect containers over network. For example, 
networking from a different perspective like SDN or a 

TABLE I.  IPERF MEASUREMENTS RESULTS 

 Docker 
(MB) 

LXC 
(MB) 

Singularity 
(MB)  

KVM 
(MB) 

Native 
(MB) 

Average 1097,4 1094,1 1122,1 1116,7 1122,2 

Std. 
Deviation 20,689 17,916 0,316 15,720 0,632 

 

 
Fig. 3.  IPerf measurements results 

TABLE II.  IPERF RETRANSMISSION RATE RESULTS 

 Docker LXC Singularity KVM Native 

Average 1751,24 1442 2,71 150,6 0 

 

TABLE III.  CORRECTED IPERF RETRANSMISSION RATE RESULTS 

 Docker LXC Singularity KVM Native 

Average 1,5 3,7 2,71 150,6 0 

TABLE IV.  CORRECTED IPERF MEASUREMENT RESULTS 

 Docker 
(MB) 

LXC 
(MB) 

Singularity 
(MB) 

KVM 
(MB) 

Native 
(MB) 

Average 1122,0 1121,8 1122,1 1116,7 1122,2 

Std. 
Deviation 0,471 0,632 0,316 15,720 0,632 

 

 
Fig. 2.  Sysbench measurements results 
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tunneling protocol like VXLAN. Containers are fairly new 
technology that is why there are limited work done by the 
scientific community yet [10]. 

C. Discussion 
The validity of our results is not without limits. The 

measurement were performed by using a particular computer 
(Huawei CH140 Bladeserver). The results could be somewhat 
different if the experiments are executed on different servers. 
We tested the most widely used container technologies but 
there are some other competitors like FreeBSD Jails or Solaris 
Zones. 

VII. POSSIBLE APPLICATION AREAS FOR CONTAINERS 
Due to the fact that containers showed only very small 

performance degradation compared to the native execution, we 
contend that they can be efficiently used in different areas. 
They could be advantageous when a large number of 
computers are intended to be used for some purposes only 
temporarily, e.g. for experimenting, because one does not need 
to install the necessary software components to the high 
number of computers. Now we show different possible areas of 
application. 

To check the validity of a previously defined criterion for a 
good speed up, 12 identical, dual-core computers were used in 
[11]. A heterogeneous cluster (altogether 20 computers of four 
types) was used in [12] to check the newly defined good speed-
up criterion for heterogeneous clusters. 26 computers of five 
different types were used to show how the extension of the 
definition of the relative speed-up for heterogeneous clusters 
can be used to evaluate the efficiency of parallel simulation 
executed by heterogeneous clusters in [13]. Finally, the number 
of computers in the heterogeneous cluster were raised to 38 (of 
6 different types) in [14]. The tedious work of software 
installation for these experiments could have been significantly 
reduced by using containers. In that case only one installation 
per CPU type would have been necessary. 

Similarly, the nearly native CPU and networking 
performance of containers could have been utilized in the 
following experiments, too. Eight computers were used to 
provide high enough load for NAT64 performance testing in 
[15] and for DNS64 performance testing in [16] and [17]. We 
believe that containers are applicable for these type of tests, 

because of the nature of the testing method: the loss or some 
delay of a packet does not have a significant influence on the 
final measurement results. However, the new benchmarking 
method for IPv6 transition technologies defined in [18] and 
implemented by dns64perf++ [19] for DNS64 benchmarking, 
will probably require native execution. 

The performance analysis of the newly invented MPT 
network layer multipath library [20] is expected to be another 
successful are of application of containers. 

VIII. CONCLUSION AND FUTURE WORKS 
We measured performances of the different container 

techniques which are available at the moment. There some 
scientific papers which evaluates the different performance 
aspects, but they does not mention anything about Singularity. 
It is a new container technique, which is tuned to be the top 
performer by sacrificing the agility and flexibility. We 
measured the CPU performance of different containers 
compared to the native and the virtualization performance. 
Containers are almost at the level of the native performance, 
which is quite good if we want to run an application, which is 
CPU intensive. Containers are also hardening the security and 
can be very useful for developers using different libraries for 
their application than host OS. The networking performances 
are also satisfying even it is not on the native level using 
default configuration but we could closely approximate the 
performance of the native execution by modification of their 
configuration. 

We suggest to change the network configuration and use 
native host networking on different container techniques 
especially when we use them in HPC systems or in network 
intensive applications. 

In the future, we want to test these containers along with 
new challengers in HPC environment using queue managers 
and MPI implementations. 

REFERENCES 
[1] Preeth E N; Fr. Jaison Paul Mulerickal; Biju Paul; Yedhu Sastri, 

“Evaluation of Docker containers based on hardware utilization”, 2015 
International Conference on Control Communication & Computing 
India (ICCC), 2015, pp. 697-700. 

[2] Amr A. Mohallel; Julian M. Bass; Ali Dehghantaha “Experimenting 
with docker: Linux container and base OS attack surfaces”,2016 
International Conference on Information Society (i-Society), 2016, pp.: 
17 - 21 

[3] Rizki Rizki; Andrian Rakhmatsyah; M. Arief Nugroho “Performance 
analysis of container-based hadoop cluster: OpenVZ and LXC,” 2016 
4th International Conference on Information and Communication 
Technology (ICoICT), 2016, pp.: 1 - 4,  

[4] Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio, “An 
Updated Performance Comparison of Virtual Machines and Linux 
Containers”, 2015 IEEE International Symposium on Performance 
Analysis of Systems and Software (ISPASS), 2015, pp.: 171 - 172, 

[5] Ann Mary Joy, “Performance comparison between Linux containers and 
virtual machines” , 2015 International Conference on Advances in 
Computer Engineering and Applications, 2015, pp: 342 - 346 

[6] Miguel G. Xavier; Marcelo V. Neves; Fabio D. Rossi; Tiago C. Ferreto; 
Timoteo Lange; Cesar A. F. De Rose asdfasdf, “Performance Evaluation 
of Container-Based Virtualization for High Performance Computing 
Environments”, 2013 21st Euromicro International Conference on 

 
Fig. 4.  IPerf corrected measurements results 

50

Á. Kovács, “Comparison of different linux containers,” 2017 40th Int. Conf. 
Telecommun. Signal Process. TSP 2017, vol. 2017–January, pp. 47–51, 2017.

Less 
than 1% overhead for CPU, and 

network



Argonne Leadership Computing Facility

Performance / Overhead

!15

Fig. 3. Elapsed time (in seconds) for running /bin/echo Hello Word”.

operation to create a new container (a.k.a. new running pro-
cess) which requires to access and modify shared resources
and data structures at kernel level.

III-B. CPU performance
In order to evaluate COS technologies for HPC we run the

HPL-Benchmark [34] for a real vs virtual cluster as the ratio
between the HPL benchmark performance of the cluster and
the performance of a real environment formed with only one
instance of same type, expressed as a percentage.

The benchmark were compiled using GNU C/C++ 5.4 and
OpenMPI 2.0.2. We did not use any additional architecture-
or instance-dependent optimizations. We used the SHA-1
hashes [12] with the sha1sum program and checked the
libraries with the ldd utility to ensure the binaries integrity.
For the HPL benchmark, the performance results depend
on two main factors: the Basic Linear Algebra Subprogram
(BLAS) [11] library, and the problem size. We used in our
experiments the GotoBLAS library, which is one of the best
portable solutions, freely available to scientists. Searching
for the problem size that can deliver peak performance is
extensive; instead, we used the same problem size 10 times
(10 N, 115840 Ns) for performance analysis.

Figure 4 shows the performance of HPL-Benchmark. The
Y axis is demonstrating the differences in technologies (that
is why it doesn’t goto zero). The LXC was not able to
achieve native performance presenting an average overhead
of 7.76%, Docker overhead was 2.89%, this could be pro-
bably caused by the default CPU use restrictions set on the
daemon which by default each container is allowed to use a
node’s CPU for a predefined amount of time. Singularity was
able to achieve a better performance than native with 5.42%
because is not emulating a full hardware level virtualization
(only the mount namespace) paradigm and as the image itself
is only a single metadata lookup this can yield in very high
performance benefits.

III-C. Disk I/O performance
The disk performance was evaluated with the IOzone

benchmark [32]. It generates and measures a variety of

Fig. 4. Rate of execution for solving the linear system.

Fig. 5. IOzone benchmark write and read.

file operations and access patterns (such as Initial Write,
Read, Re-Read and Rewrite). We ran the benchmark with
a file size of 15GB and 64KB for the record size, under
two(2) scenarios. The first scenario was a totally contained
filesystem (without any bind or mount volume), and the
second scenario was a NFS binding from the local cluster.

A closer inspection in COS shown in Figure 5 reveals that
both LXC and Singularity had similar results for write ope-
rations. For read operations, where the Singularity slightly
reach the native performance, and LXC had an overhead
of 16.39% against native. On the other hand, with Docker,
we observed a lost of performance of 37.28% on write and
65.25% on read. Figure 6 shows the performance of random
read and random write. We noticed a similar behavior than
the read and write standard operations. Docker introduces
a greater overhead on random I/O processes. While LXC
and Singularity filesystem implementations allows a better
I/O performance, Docker advanced multi-layered unification
filesystem (AUFS) has it drawbacks. When an application
running in a container needs to write a single new value to
a file on a AUFS, it must copy on write up the file from the
underlying image. The AUFS storage driver searches each
image layer for the file. The search order is from top to

C. Arango, R. Dernat, and J. Sanabria, “Performance Evaluation of Container-based 
Virtualization for High Performance Computing Environments,” 2017.
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Fig. 3. Elapsed time (in seconds) for running /bin/echo Hello Word”.

operation to create a new container (a.k.a. new running pro-
cess) which requires to access and modify shared resources
and data structures at kernel level.
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In order to evaluate COS technologies for HPC we run the

HPL-Benchmark [34] for a real vs virtual cluster as the ratio
between the HPL benchmark performance of the cluster and
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OpenMPI 2.0.2. We did not use any additional architecture-
or instance-dependent optimizations. We used the SHA-1
hashes [12] with the sha1sum program and checked the
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For the HPL benchmark, the performance results depend
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(BLAS) [11] library, and the problem size. We used in our
experiments the GotoBLAS library, which is one of the best
portable solutions, freely available to scientists. Searching
for the problem size that can deliver peak performance is
extensive; instead, we used the same problem size 10 times
(10 N, 115840 Ns) for performance analysis.

Figure 4 shows the performance of HPL-Benchmark. The
Y axis is demonstrating the differences in technologies (that
is why it doesn’t goto zero). The LXC was not able to
achieve native performance presenting an average overhead
of 7.76%, Docker overhead was 2.89%, this could be pro-
bably caused by the default CPU use restrictions set on the
daemon which by default each container is allowed to use a
node’s CPU for a predefined amount of time. Singularity was
able to achieve a better performance than native with 5.42%
because is not emulating a full hardware level virtualization
(only the mount namespace) paradigm and as the image itself
is only a single metadata lookup this can yield in very high
performance benefits.

III-C. Disk I/O performance
The disk performance was evaluated with the IOzone

benchmark [32]. It generates and measures a variety of

Fig. 4. Rate of execution for solving the linear system.

Fig. 5. IOzone benchmark write and read.

file operations and access patterns (such as Initial Write,
Read, Re-Read and Rewrite). We ran the benchmark with
a file size of 15GB and 64KB for the record size, under
two(2) scenarios. The first scenario was a totally contained
filesystem (without any bind or mount volume), and the
second scenario was a NFS binding from the local cluster.

A closer inspection in COS shown in Figure 5 reveals that
both LXC and Singularity had similar results for write ope-
rations. For read operations, where the Singularity slightly
reach the native performance, and LXC had an overhead
of 16.39% against native. On the other hand, with Docker,
we observed a lost of performance of 37.28% on write and
65.25% on read. Figure 6 shows the performance of random
read and random write. We noticed a similar behavior than
the read and write standard operations. Docker introduces
a greater overhead on random I/O processes. While LXC
and Singularity filesystem implementations allows a better
I/O performance, Docker advanced multi-layered unification
filesystem (AUFS) has it drawbacks. When an application
running in a container needs to write a single new value to
a file on a AUFS, it must copy on write up the file from the
underlying image. The AUFS storage driver searches each
image layer for the file. The search order is from top to

C. Arango, R. Dernat, and J. Sanabria, “Performance Evaluation of Container-based 
Virtualization for High Performance Computing Environments,” 2017.

Singularity 
was able to achieve a better 

performance than native with 5.42% 
because is not emulating a full hardware 

level virtualization (only the mount 
namespace) paradigm and as the image itself 

is only a single metadata lookup this can 
yield in very high performance 

benefits.

HPL benchmark, higher is better
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Theta Benchmarks - Bandwidth
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Spencer Williams, J. Taylor Childers 
https://github.com/spencer-williams/sgww_argonne

• OSU micro benchmark 
• 1000 runs for each 

message size 
• In container vs Out  
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Theta Benchmarks - File checks
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Spencer Williams, J. Taylor Childers 
https://github.com/spencer-williams/sgww_argonne

• One script creates n 
files for n MPI ranks. 

• Another one checks the 
files if they exist  

• Singularity caches its 
files making it ~6x 
faster 
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How to start?

• Official Singularity documentation 
• https://www.sylabs.io/docs/ 
• singularity-container.slack.com 

• How to use Singularity on Theta 
• https://www.alcf.anl.gov/user-guides/singularity 

• Similar tutorials from other HPC centers: 
• http://www.sdsc.edu/support/user_guides/tutorials/singularity.html 
• https://github.com/NIH-HPC/Singularity-Tutorial 
• https://ulhpc-tutorials.readthedocs.io/en/latest/containers/singularity/ 

• Github repo to check Singularity source and issues 
• https://github.com/sylabs/singularity 

• Singularity registry 
• https://www.singularity-hub.org/ 

• Docker registry 
• https://hub.docker.com/
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https://www.sylabs.io/docs/
http://singularity-container.slack.com
https://www.alcf.anl.gov/user-guides/singularity
http://www.sdsc.edu/support/user_guides/tutorials/singularity.html
https://github.com/NIH-HPC/Singularity-Tutorial
https://ulhpc-tutorials.readthedocs.io/en/latest/containers/singularity/
https://github.com/sylabs/singularity
https://www.singularity-hub.org/
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How to start?

• If you have sudo access to a laptop, or even a Raspberry Pi: 
• Optional: Install Docker  

• https://docs.docker.com/get-started/ 
• Install Singularity (not packaged)  

• https://www.sylabs.io/guides/2.6/user-guide/installation.html 
• Else if you have a GitHub account: 

• Login Singularity Hub with your GitHub account. You can create Singularity 
recipe files in a GitHub repo and they will be built automatically if you link this 
repo to shub. 

• Else: 
• Search Singularity Hub (tip: jtchilders, keceli, theta) 
• You can pull/build images from Singularity or Docker hub on Theta. 
• Open a GitHub account.
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https://computenodes.net/2017/08/30/bundling-singularity-within-a-yocto-image-for-the-raspberry-pi/
https://www.sylabs.io/guides/2.6/user-guide/installation.html
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Containers and Images

Docker manual: “Build an image and run it as one container" 

• An image is an executable package that includes everything needed to run an 
application--the code, a runtime, libraries, environment variables, and 
configuration files. 

• A container is a runtime instance of an image--what the image becomes in 
memory when executed (that is, an image with state, or a user process), i.e. a 
container is launched by running an image, but you first build the image. 

   Singularity manual: “Build a Container” 
•  Uses image to refer to the *.img, *.simg files. Refers the build process as building 

container.

!21

https://docs.docker.com/get-started/part2/
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Using Singularity

• Before you report an error, run Singularity with -d flag 
• -h is useful to remember about the syntax for each command 
• Useful commands:

!22

$> singularity 
USAGE: singularity [global options...] <command> [command options...] ... 

GLOBAL OPTIONS: 
    -d|--debug    Print debugging information 
    -h|--help     Display usage summary 
    -s|--silent   Only print errors 
    -q|--quiet    Suppress all normal output 
       --version  Show application version 
    -v|--verbose  Increase verbosity +1 
    -x|--sh-debug Print shell wrapper debugging information

build      Build a new Singularity container                                 
shell      Run a Bourne shell within container 
exec       Execute a command within container                                
run        Launch a runscript within container                               
apps       List available apps within a container                            
pull       Pull a Singularity/Docker container to $PWD
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Building container images
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—-sandbox:  Writable container within a directory 
--writable: Legacy writable image format (ext3)

$>sudo singularity build <OPT> <IMG> SingularityFile

$>singularity build <OPT> <IMG> shub://xxx/yy:z 
$>singularity build <OPT> <IMG> docker://xxx/yy:z

Build based on an image on a hub: 
(Does not require sudo)

Build based on a recipe file (Requires sudo)

By default created image <IMG> is read only in 
squashfs format. 
Writable image can be created: (Requires sudo) 

https://www.sylabs.io/guides/2.6/user-guide/build_a_container.html

shub://xxx/yy:z
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Singularity on Theta 
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$> singularity run -B ./mydata:/data:rw quip.simg

$> singularity run quip.simg                       

$> singularity build quip.simg shub://libAtoms/QUIP

If you are not going to run the container in 
parallel, you can use any images from 
Singularity or Docker hub.

You can run the image like any  other application.

You can bind a directory on Theta to your container 
with -b <host_path>:<container_path>:<opt> 
<opt> = ro for read-only,  
<opt> = rw for read/write

shub://libAtoms/QUIP


Argonne Leadership Computing Facility

We need to use Cray MPI on Theta, so we cannot use any image.
We can build our special image with a Singularity recipe file

Singularity on Theta (MPI applications)
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Container
App

MPICH

Container

MPICH

Cray MPICH

App

Run on Theta
Built image externally
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Source of base image

Make working directory. 
Copy files from into image.

During the ‘setup’ phase, 
the image does not yet exist  
and is still on the host 
filesystem at the path 
SINGULARITY_ROOTFS
This creates app directory 
at ‘/myapp’ in the image
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Source of base image

Make working directory. 
Copy files from into image.

Commands required for 
installing your application.

Specify the executable to 
run with container is called
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Source of base image

Make working directory. 
Copy files from into image.

Commands to install my 
image with the application.

Specify the executable to 
run with container is called

Typically containers are 
built to run one executable.

singularity run myapp.img 
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Using a mpich installed  
Image as the base

Commands to install 
PETSc

Bootstrap: shub 
From: keceli/mpi_benchmark:theta 

%setup 
   echo ${SINGULARITY_ROOTFS} 
   cd ${SINGULARITY_ROOTFS}/container 
   
%post 
   yum update -y 
   git clone -b maint https://bitbucket.org/petsc/petsc petsc 
   cd petsc 
   PATH=$PATH:/mpich-3.2.1/install/bin/ 
   LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/mpich-3.2.1/install/lib 
   export PETSC_DIR=/petsc 
   export PETSC_ARCH=arch-container 
   ./configure --with-shared-libraries=1 --with-debugging=1 --
download-fblaslapack --with-cc=mpicc --with-cxx=mpicxx --with-
fc=mpif90 
   make -j 4 PETSC_DIR=/petsc PETSC_ARCH=arch-container all 
   cd /petsc/src/ksp/ksp/examples/tutorials 
   make ex5 
    
%environment 
   export PETSC_DIR=/petsc 
   export PETSC_ARCH=arch-container 
      
%runscript 
   /petsc/src/ksp/ksp/examples/tutorials/ex5  

Note: This recipe builds on 
my laptop but gives an 
error on Singularity hub, 
since they do not allow 
configure script to run 
executables.
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• Web Interface to transfer files between Globus 
Endpoints (NERSC,ALCF,OLCF,BNL,etc.)

• Login using ANL Credentials or other institutes
• Must authenticate with the myproxy server of 

source and destination.

Globus for Data Transfer
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https://www.globus.org/app/transfer
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• There is also a Python/Java API for doing this

• Example Python implementation

• Provides effective transfer rates at the scale of 
300MB/s between large facilities

Globus for Data Transfer
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https://docs.globus.org/api/transfer/

https://github.com/globusonline/transfer-api-client-python

from globusonline.transfer import api_client

api = api_client.TransferAPIClient(username="myusername",
                                cert_file="/path/to/client/credential",
                                key_file="/path/to/client/credential")
status_code, status_message, data = api.task_list()
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• https://github.com/jtchilders/singularity_mpi_test_recipe
• Need to add recipe file inside with filename ‘Singularity’
• Add file pi.c from previous link

Create new Github Repository
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https://github.com/jtchilders/singularity_mpi_test_recipe
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• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your 

container collection.
• Click the big red button

Create Singularity Hub Account
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https://www.singularity-hub.org/login/
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• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your 

container collection.
• Click the big red button
• Select your new repository and click the big red 

button

Create Singularity Hub Account
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https://www.singularity-hub.org/login/
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• Go to: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your 

container collection.
• Click the big red button
• Select your new repository and click the big red 

button
• Now you have your recipe listed and 

Singularity Hub will begin recursively searching 
the repo for any files named ‘Singularity’ and 
building those recipes

• Our example only has 1 recipe 
• Click on the recipe 

Create Singularity Hub Account
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https://www.singularity-hub.org/login/
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• Goto: https://www.singularity-hub.org/login/
• Authenticate using your Github account
• You can then add github repositories to your 

container collection.
• Click the big red button
• Select your new repository and click the big red 

button
• Now you have your recipe listed and 

Singularity Hub will begin recursively searching 
the repo for any files named ‘Singularity’ and 
building those recipes

• Our example only has 1 recipe 
• Click on the recipe to see it’s build status
• Error messages during build can be seen by 

clicking the big red button
• Otherwise it will list the container as 

COMPLETE

Create Singularity Hub Account
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https://www.singularity-hub.org/login/
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Running Singularity on Theta
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$> singularity build test.img shub://keceli/mpi_benchmark:theta 
$> qsub submit.sh 

#!/bin/bash
#COBALT -t 30
#COBALT -q training
#COBALT -n 2
#COBALT -A SDL_Workshop

module swap PrgEnv-intel PrgEnv-gnu
# Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:$LD_LIBRARY_PATH
export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH

echo $SINGULARITYENV_LD_LIBRARY_PATH

aprun -n 8 -N 4 singularity run -B /opt/cray:/opt/cray:ro -B /var/opt:/var/opt:ro test.img
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Summary

• Containers can be helpful for 
• Portability 

• HPC environment requires special care. 
• Reproducibility 
• Faster development cycles 

• Minimal overhead 
• There might be additional performance penalties due to dynamic 

linking, fat images, moderate optimization 
• Very useful for complicated software stacks with legacy 

dependencies. 
• With more HPC interest in containers, technology will evolve faster.

!38
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Resources

• Official Singularity documentation 
• https://www.sylabs.io/docs/ 
• singularity-container.slack.com 

• How to use Singularity on Theta 
• https://www.alcf.anl.gov/user-guides/singularity 

• Similar tutorials from other HPC centers: 
• http://www.sdsc.edu/support/user_guides/tutorials/singularity.html 
• https://github.com/NIH-HPC/Singularity-Tutorial 
• https://ulhpc-tutorials.readthedocs.io/en/latest/containers/singularity/ 

• Github repo to check Singularity source and issues 
• https://github.com/sylabs/singularity 

• Singularity registry 
• https://www.singularity-hub.org/ 

• Docker registry 
• https://hub.docker.com/
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https://www.sylabs.io/docs/
http://singularity-container.slack.com
https://www.alcf.anl.gov/user-guides/singularity
http://www.sdsc.edu/support/user_guides/tutorials/singularity.html
https://github.com/NIH-HPC/Singularity-Tutorial
https://ulhpc-tutorials.readthedocs.io/en/latest/containers/singularity/
https://github.com/sylabs/singularity
https://www.singularity-hub.org/
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Container Survey
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Please vote based on your experience with:   
•Virtual machines, hypervisors (VMware (1998), Virtualbox (2007)) 
•Docker (2013) 
•Shifter (2015) 
•Singularity (2016) 

https://doodle.com/poll/2a723x2u9esbxyhh 
or 

https://tinyurl.com/thetasurvey2 

https://doodle.com/poll/2a723x2u9esbxyhh
https://tinyurl.com/thetasurvey2
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Any Questions?
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